Antimicrobial Stewardship (AMS)

Rima Moghnieh, MD July 2018

Why Antimicrobial Stewardship in an Infection Prevention and Control Workshop?

Correlation Between Antibiotic Consumption and

Resistance

Redgrave LS et al. Trends in Microbiology August 2014, Vol. 22, No. 8

Ę

Correlation Between Antibiotic Consumption and

Resistance

142

Ciprofloxacin consumption and number of cases of hospital-acquired (ESBL)-producing coliforms

DDDs, defined daily doses; pt/occ.bds, patient-occupied bed-days

S.J. Dancer et al. International Journal of Antimicrobial Agents 41 (2013) 137-

Correlation Between Antibiotic Consumption and

Resistance

Relationship between incidence density of Pseudomonas aeruginosa isolated from VAP (isolates/1,000 patient days) susceptible (Pearson r = 0.66/p = 0.02) or resistant (Pearson r = 0.70/p = 0.01) to imipenem and density of use of carbapenems in DDD/1,000 patient-days.

Moreira MR et al. Revista da Sociedade Brasileira de Medicina Tropical 2013;46(1):39-44.

How Antibiotic Use Affects Patients and Population

Increasing prevalence of some WHO priority pathogens in Lebanon

Resistant Organism	Mean Prevalence in 2011/2013	Mean Prevalence in 2015/2016 (Range)
3 rd generation cephalosporin- resistant Enterobacteriaceae	35%	41% (28%-65%)
Carbapenem-resistant Enterobacteriaceae	1%	3% (0-10%)
Carbapenem-resistant P. aeruginosa	27%	30% (5%-45%)
Carbapenem-resistant A. baumannii	82%	88% (26%-97%)
FQ resistant Salmonella spp.	5%	10% (0-44%)
Methicillin resistant S. aureus	27%	28% (14%-48%)
Vancomycin resistant Enterococci	1%	2% (0-17%)
Penicillin non-susceptible S. pneumoniae	_	25% (21%-40%)

Chamoun K. et al. Int J Infect Dis 2016; 46: 64–70 Moghnieh R. et al (Unpublished Data, 2018)

What Is Antibiotic Stewardship?

- On Going effort to achieve the goals of:
- Using the right antibiotic for the right indication, at the right time at the right dose for the right duration.

Primary goal

• Optimize clinical outcomes while minimizing unintended consequences of antimicrobial use, including toxicity, the selection of pathogenic organisms, and the emergence of AMR.

Why Stewardship?

Appropriate initial antibiotic while improving patient outcomes and heathcare Unnecessary antibiotics and adverse patient outcomes and increased cost

- Education
- Guidelines and clinical pathways
- Antimicrobial restriction, prophylaxis preprinted order forms, policies
- De-escalation
- Dose optimization, duration
- IV to PO therapy

Education

- Conferences, presentations
- Staff rounds
- Dissemination of local guidelines
- E-education
- Education alone without intervention is only marginally effective and nonsustainable
- Audit and Feedback

Antibiotic Use

- Limited use to bacterial infections only
- Right timing
- Narrowest spectrum
- Highest dose
- Shortest duration
- In a way to ensure maximal compliance

Policies

Restriction of broad-spectrum antibiotics

Antimicrobial prophylaxis

Role of ID Physician

- Guidelines
- Education
- Consultation
- Evaluating stopping orders
- Giving Feedback
- Deciding what to measure
- Communicating with all teams including administration.

Role of Clinical Pharmacist

- Evaluating prescription pattern in the hospital
- Measuring consumption
- Giving advice about :Time, dose, duration, corrective actions, DDI.
- Education
- Consulting with ID

Role of IC

- Stop transmission of infections in the hospital
- Reporting infections to ID, ASP, MOH,...
- Hand hygiene
- Proper isolation

Role of Clinical Microbiologist

- Quick reporting of culture
- Rapid testing of AMR
- Reporting of AMR patterns

Where To Start: Components

- Leadership Commitment: dedicating necessary human, financial, and IT resources.
- Accountability: Appointing a single leader responsible for program outcomes. Experience with successful programs show that a physician leader is effective.
- **Drug Expertise:** Appointing a single pharmacist leader responsible for working to improve ABX use.
- Action: Implementing at least one recommended action, such as systemic evaluation of ongoing treatment need after a set period of initial treatment (i.e. "ABX time out" after 48 h).
- Tracking: Monitoring ABX prescribing and resistance patterns
- **Reporting:** Regular reporting information on ABX use and resistance to doctors, nurses and relevant staff.
- Education: Educating clinicians about resistance and optimal prescribing.

Leadership Support

- Leadership support in a number of forms, including:
 - o Formal statements that the facility supports efforts to improve and monitor ABX use.
 - o Including stewardship-related duties in job descriptions and annual performance reviews.
 - Ensuring staff from relevant departments are given sufficient time to contribute to stewardship activities.
 - o Supporting training and education.
 - o Ensuring participation from many groups that can support stewardship activities.
- Financial support greatly arguments the capacity and impact of a stewardship program and stewardship programs will often pay for themselves, both through savings in both ABX expenditures and indirect costs.

A Lebanese Experience

• The MGH AMS Experience: 2016- Ongoing

MGH Experience: The Ultimate Aim

- To ensure that every patient receives the right antibiotics(IF NEEDED) at the right time using the right dose for the right duration
- To reduce mortality, toxicity and length of stay,

- To reduce AMR, and
- To Decrease the cost of ABX.

MGH Experience: Antibiotic stewardship committee or team

- ID specialist
- Clinical ID pharmacist
- Clinical microbiologist
- IC specialist
- Information Technologist.
- Administration representative

MGH Experience: Indicators

- Antibiotic consumption: DOT/1000 patient days.
- Antimicrobial resistance: Isolated MDR/XDR/1000 patient days.
- Antimicrobial consumption: million LL/year.
- Clinical outcome per antibiotic use.

MGH Experience: Antipseudomonal Carbapenems Use (Days of therapy (DOT)/1000 patient days)

MGH Experience: Colistin Use (Days of therapy (DOT)/1000 patient days)

MGH Experience: Acinetobacter XDR (Numbers/1000 patient days)

MGH Experience: Antibiotics Expenditure

Year	Money (L.L.)
Before AMS	2,715,634,733
AMS Year 1	2,189,847,745
AMS Year 2	1,951,359,105 - 1 <mark>1%</mark>

Impact of coupled AMS and IPC interventions on AMR rates

Infection and Drug Resistance

Dovepress open access to scientific and medical research

Open Access Full Text Article

ORIGINAL RESEARCH

Successful control of resistance in *Pseudomonas aeruginosa* using antibiotic stewardship and infection control programs at a Chinese university hospital: a 6-year prospective study

The Chinese Experience

• Objective:

o Investigate the effect of AMS and IPC in controlling the resistance of *P. aeruginosa* at a tertiary hospital center, China between 2012 and 2017.

• Methods:

o Antibiotic use was restricted through AMS program.

o The IPC program included environmental cleaning and disinfection, hand hygiene, active surveillance of *P. aeruginosa*, and education about infection control.

Results

A significant correlation was found between the incidence rate of MDR *P. aeruginosa* and the consumption of antimicrobial agents (*P*=0.01).

	Year					P-value	
	2012	2013	2014	2015	2016	2017	
DDD (g/1,000 patient-days)	45	44.19	43.37	39.52	38.55	38.15	0.04
ABHG (L/1,000 patient-days)	0.6	3.8	5.7	8.5	9.8	10.9	0.005

	% of isola	% of isolates with the MDR or XDR phenotype					
MDR	20	22	18.5	17	17.4	15	0.04
XDR	5.8	4.9	3.5	2.1	1.2	1	nd
Note: nd, statistic	al analysis not performed f	for the XDR subset d	ue to the small numbe	er of isolates.			

Why Antimicrobial Stewardship in an Infection Prevention and Control Workshop?

Thank You